Clinical overview

Translating neurotrophic and cellular plasticity: from pathophysiology to improved therapeutics for bipolar disorder

Objective: Bipolar disorder (BD) likely involves, at a molecular and cellular level, dysfunctions of critical neurotrophic, cellular plasticity and resilience pathways and neuroprotective processes. Therapeutic properties of mood stabilizers are presumed to result from a restoration of the function of these altered pathways and processes through a wide range of biochemical and molecular effects. We aimed to review the altered pathways and processes implicated in BD, such as neurotrophic factors, mitogen-activated protein kinases, Bcl-2, phosphoinositol signaling, intracellular calcium and glycogen synthase kinase-3.

Methods: We undertook a literature search of recent relevant journal articles, book chapter and reviews on neurodegeneration and neuroprotection in BD. Search words entered were ‘brain-derived neurotrophic factor,’ ‘Bcl-2,’ ‘mitogen-activated protein kinases,’ ‘neuroprotection,’ ‘calcium,’ ‘bipolar disorder,’ ‘mania,’ and ‘depression.’

Results: The most consistent and replicated findings in the pathophysiology of BD may be classified as follows: i) calcium dysregulation, ii) mitochondrial/endoplasmic reticulum dysfunction, iii) glial and neuronal death/atrophy and iv) loss of neurotrophic/plasticity effects in brain areas critically involved in mood regulation. In addition, the evidence supports that treatment with mood stabilizers; in particular, lithium restores these pathophysiological changes.

Conclusion: Bipolar disorder is associated with impairments in neurotrophic, cellular plasticity and resilience pathways as well as in neuroprotective processes. The evidence supports that treatment with mood stabilizers, in particular lithium, restores these pathophysiological changes. Studies that attempt to prevent (intervene before the onset of the molecular and cellular changes), treat (minimize severity of these deficits over time), and rectify (reverse molecular and cellular deficits) are promising therapeutic strategies for developing improved treatments for bipolar disorder.

Key words: brain-derived neurotrophic factor; Bcl-2; mitogen-activated protein kinases; neuroprotection; calcium; bipolar disorder; mania; depression

Rodrigo Machado-Vieira, Rua Dr. Ovidio Pires de Campos 785, LIM-27, Institute of Psychiatry, 3rd floor N, CEP 05403-010, São Paulo, Brazil.
E-mail: machadovieirar@gmail.com

*These authors contributed equally to this manuscript.

Accepted for publication May 2, 2012

Clinical recommendations

- Neuroprotection and neurotrophic effects may represent a promising field for the development of improved treatments for bipolar disorder (BD).
Introduction

Bipolar disorder (BD) likely arises from the complex interface among multiple susceptibility and protective genes and environmental factors. Its phenotype includes not only mood disturbances, but also a constellation of comorbidities, cognitive, motor, autonomic, neuroendocrine and neurovegetative alterations (1). This complex behavioural illness likely occurs through disturbances at multiple levels (systemic, cellular, molecular, and gene expression). On the basis of its polygenic origin, BD is characterized by the existence of diverse cellular and molecular targets associated not only with its pathophysiological basis, but also with its therapeutic profile. Most of these targets have been shown to critically regulate cellular plasticity and resilience (2). The objective of this study was to revise the evidences for the dysfunction of neurotrophic and cellular plasticity and resilience pathways in BD, with a particular focus on the disrupted process involved in neuroprotection.

Despite significant advances in the development of novel therapeutics during the last 20 years, the gold standard mood stabilizer lithium is still considered the most used and effective therapy for BD worldwide. Lithium exerts a wide range of effects at synapses and signal transduction pathways and has been used as an important tool in experimental paradigms of neuroprotection and neurotrophic effects; such paradigms are being used in the search of novel therapeutics for BD (1). It should be mentioned that most of these effects are associated with its chronic use at therapeutically relevant doses, which represents the key clinical paradigm when evaluating the predictive validity of lithium and other mood stabilizers.

Soeiro-de-Souza et al.

- New therapeutic targets beyond monoamines are expected to involve intracellular signaling cascades involved in cell survival. Once the disrupted pathways are identified, therapeutic strategies would be aimed to prevent, treat, or rectify the identified altered cellular and molecular processes in BD.
- Lithium represents an important tool to better understand the presumed targets involved in BD through its effects on neuroprotection, such as neurotrophic factors, mitogen-activated protein kinases, phosphoinositol signaling, intracellular calcium, energy metabolism (mitochondria and endoplasmic reticulum), and glycogen synthase kinase-3.

Additional comments

- The preclinical data showing neurotrophic and neuroprotective effects of mood stabilizers will need to be extended to the clinic to ascertain that they truly have a major role in the pathophysiology of BD.
- A major problem in neuropharmacological research is the difficulty in precisely ascribing therapeutic relevance to any observed biochemical finding, especially in the absence of suitable animal models (and unclear direct targets) for BD.

Several direct targets of lithium have been identified and extensively studied, such as neurotrophic factors, mitogen-activated protein kinases, Bel-2, phosphoinositol signaling, intracellular calcium, glutamate activity, and glycogen synthase kinase-3 (3–5). We proceed to review these targets of lithium in the following sections.

General concepts in neuroprotection and neuroplasticity: implications in BD

Neuroplasticity is characterized as the biological ability to induce and sustain important adaptative changes to internal and external stimuli in order to maintain the physiological functioning of the central nervous system (CNS). These changes aim to strengthen the synaptic signal and its efficacy through a direct regulation of neurotransmission (including receptor subunit phosphorylation and surface expression), intracellular signaling cascades in pre- and post-synaptic proteins as well as regulation of the expression of genes implicated in growth, survival, and synaptic transmission. These effects allow for a physiological remodeling of axonal and dendritic architecture. This remodeling is believed to be important to cellular resilience and at a clinical level, to mood stabilization.

Synaptic strength and cellular plasticity can be finely regulated over a short or even a long time scale by a combination of factors including previous activity of the network. Impairment of synaptic strength and cellular plasticity in mood disorders has been shown to involve changes in pathways regulating neurotrophic factors and neuroprotective proteins levels and expression. Neurotrophic factors, initially identified as
modulators of neuronal growth and differentiation, have been currently considered critical regulators of plasticity and cell resilience in adult neurons and glia (1, 6). Activation of neuroprotective and neurotrophic pathways has also been linked to the therapeutic effects of mood stabilizers. Even though lithium, valproate, and carbamazepine (CA) do not share similar chemical structure or all of the some biochemical targets, their neuroprotective effects have been shown to be the most replicated findings in both preclinical and clinical studies.

Aims of the study

This article will focus upon recent findings of cellular signaling abnormalities and impairments of cellular neurotrophic cascades that have been implicated in BD (Fig. 1).

Material and methods

We undertook a literature search of recent relevant journal articles, book chapter and reviews on this subject. Search words entered were ‘brain-derived neurotrophic factor,’ ‘Bcl-2,’ ‘GSK3,’ ‘IP3,’ ‘mitogen-activated protein kinases,’ ‘neuroprotection,’ ‘neurotrophic,’ ‘calcium,’ ‘bipolar disorder,’ ‘mania,’ and ‘depression.’

Results

Neuroimaging and neuropathological human studies: evidence of cellular dysfunction in BD

Reductions in volume, density, number and/or size of neurons and glial cells have been described in the subgenual prefrontal cortex (PFC), orbital cortex, dorsal anterolateral PFC, amygdala, and basal

Fig. 1. Signaling abnormalities and impairment of neurotrophic cascades that underlie the neurobiological basis of bipolar disorder.

Lithium increases their expression and/or levels, thus inducing neuroprotective and neurotrophic effects. Activation of brain neurotransmitter-coupled G-proteins induces PLC hydrolysis of PIP2 to IP3 and DAG (not shown), which activates PKC. IP3 binds to the IP3R, thus inducing the release of ER calcium stores. Elevated intracellular calcium levels have been described in bipolar disorder and may increase the risk of apoptosis. The neuroprotective protein Bcl-2 down regulates ER calcium release through an IP3R-dependent mechanism. The same effect is induced by lithium treatment, which also increases Bcl-2 levels. IP3 is recycled by IMPase, another of lithium’s targets. Cellular signaling through Wnt glycoproteins and frizzled receptors result in GSK-3β inhibition, a critical cellular target and effector for diverse proteins. Inhibition of GSK-3β prevents β-catenin phosphorylation and stimulates its translocation to the nucleus, thus targeting transcription of specific genes activating neurotrophic effects and synaptogenesis. Activation of the BDNF receptor (Trk-B) activates the ERK/MAPK pathway, which inhibits GSK-3β and BAD. Activation of the extracellular signal-regulated kinase–mitogen-activated protein kinase pathway by BDNF increases the expression of nuclear CREB, which facilitates the expression of neurotrophic/neuroprotective proteins such as Bcl-2 and BDNF. BDNF also activates the PI3K pathway, which indirectly inhibits GSK-3β and BAD. Mitochondrial Bcl-2 and Bcl-xl also inhibit pro-apoptotic activation of BAD, as well as consequent mitochondrial increase in calcium influx and cytochrome C release. Bcl-2 = B-cell lymphoma-2; BDNF = brain-derived neurotrophic factor; CREB = cAMP response element binding protein; DAG = diacylglycerol; ERK = extracellular regulated kinase; GSK = glycogen synthase kinase; IMPase = inositol monophosphatase; IP3 = inositol 1,4,5-triphosphate; IP3R = IP3 receptor; MAPK = mitogen-activated protein kinase; PKC = protein kinase C; PLC = phospholipase C; PTP = permeability membrane pore; TrkB = tyrosine receptor kinase B; RAS = RAt Sarcoma; AKT = B; PLA2 = Phospholipase A2; PLC = Phospholipase C; VEGF = vascular endothelial growth factor; NT-3 = Neurotrophin-3.
ganglia and dorsal raphe nuclei in BD (2, 7–9). Also, decreased glial cells density and increased nuclei size have been described in frontal cortical areas (1, 9–12). In parallel, reduced gray matter volumes in areas of the orbital and medial PFC, ventral striatum and hippocampus, and enlargement of third ventricles were observed in patients with BD. Significant reductions in the subgenual PFC glial number (41%) has also been reported in patients with a family history of BD (3–5, 10). A meta-analysis of imaging studies concluded that volumetric abnormalities of the subgenual PFC, striatum, hippocampus, and amygdala are present in first episode BD and children with BD (13). Other studies have found reductions in oligodendrocyte number and gene expression changes in the dorsolateral prefrontal cortex in individuals with BD (7–9, 14, 15). Interestingly, imaging data suggest that adolescents with BD who are taking mood stabilizers may be protected from the volume loss (16).

The presence of white matter abnormalities has been also described in imaging studies in BD. Although the cause of white matter hyperintensities in mood disorders is unknown, their presence particularly in the brains of young patients with BD suggests that importance in the pathophysiology of the illness (17, 18). In postmortem brain studies, reduced subcortical nuclei volumes in BD has been reported (19, 20). Neuronal density and size were found to be decreased in layers III, V, and VI in BD (8, 9, 11). Also, smaller pyramidal cell soma size was found in the hippocampal CA1 region (21).

Consistent with neurotrophic/neuroprotective properties of lithium or valproate, patients treated with chronic lithium or valproate exhibited subgenual PFC volumes that were significantly greater than non-treated patients, and not significantly different from controls (22). Also, in two elegant imaging studies, Moore et al. (23, 24) observed elevated N-acetyl-aspartate (NAA) (a mitochondrial marker of neuronal integrity) levels and gray matter volume in lithium-treated subjects. A subsequent MRI study by Sassi et al. (25) also showed an increased gray matter volume in lithium-treated BD subjects compared with untreated and healthy controls. Interestingly, the lithium-induced NAA increase showed a strong specificity to the gray matter. Other studies have noted similar effects with other mood stabilizers (16, 26).

Calcium dynamics, Bcl-2 regulation, and mitochondrial/endoplasmic reticulum (ER) activity

The calcium ion (Ca$^{2+}$) is a ubiquitous intracellular messenger controlling diverse critical biological functions in the human CNS. Calcium ions influence the synthesis and release of neurotransmitters and second-messenger cascades, thus affecting plasticity activation, intracellular signaling, energy metabolism, and synaptic consolidation (27–29). Mitochondria regulate different metabolic activities such as control of apoptosis, glutamate-mediated excitotoxic neuronal injury, and oxidative stress activity. Mitochondrial-encoded genes regulate synaptic activity related to long-lasting up-regulation of energy production (30, 31). Mitochondrial Ca$^{2+}$ regulation also has a critical role in neuronal and glial activity, modulating both physiological and pathophysiological cellular responses (32). Decreased ATP and NAA levels in human studies have been associated with dysfunctions in mitochondrial metabolism. Inhibitors of the mitochondrial respiratory chain lead to a decrease in NAA levels, which is associated with deficits on ATP and oxygen availability (1, 33).

Impaired regulation of Ca$^{2+}$ cascades is one of the most reproducible biological abnormalities described in BD research. It directly involves mitochondria and ER activity and has a critical role in neuroplasticity and cell survival. For instance, specific dysfunctions in store-operated calcium channel, ER function, and mitochondrial calcium uptake have been described in BD (2, 34). Elevated basal and agonist-stimulated intracellular Ca$^{2+}$ levels in platelets and lymphocytes of bipolar I disorder (BD-I) have been widely described as well (1, 35–40). At therapeutically relevant doses, lithium attenuated agonist-stimulated intracellular Ca$^{2+}$ responses (3–5, 41, 42). Furthermore, chronic lithium was shown to block an increase in calcium concentration, thus preventing oxidative stress and loss of mitochondrial membrane potential (6, 43, 44).

Mitochondrial dysfunction in BD was first proposed by Kato and Kato (7–9, 45–47) and has been substantiated by others as well (see 9–12, 30). Konradi et al. (10, 48) have also showed reduced expression of genes encoding mitochondrial proteins (including phosphorylation of mitochondrial inner membrane, subunits I and V). Decreased levels of NDUFV2 gene (a nuclear-encoded mitochondrial complex I subunit gene) was described in patients with BD (13, 49). Recently, Andreazza et al. reported a selective decrease in mitochondrial complex I subunit NDUSF7 activity in BD subjects (7–9, 14, 15, 50). Also, decreased pH and increased lactate, with altered oxidative phosphorylation (16, 51) were observed in the brains of BD subjects, giving further evidence for this model. Other related findings includes altered expression of antioxidant genes and its levels in patients with
BD (17, 18, 52, 53), as well as a significant increase in the number of proapoptotic genes in hippocampus from BD subjects (19, 20, 52). Interestingly, a downregulation in the proteins of the electron transfer chain in BD in glucose-deprived medium has also been described (8, 9, 11, 54).

Bcl-2 is a membrane-associated protein with both antiapoptotic and neuroprotective properties expressed preferentially in the limbic system (21, 55). Bcl-2 is mainly localized in the outer mitochondrial membrane and ER (22, 56–58) and activates neurotrophic pathways inducing neurite sprouting/outgrowth and axonal regeneration, thus preventing the deleterious effects of different insults (23, 24, 56, 57). Bcl-2 attenuates release of calcium from the ER and stabilizes mitochondrial membrane integrity thus limiting the release of cytochrome from mitochondria and activation of apoptotic pathways (25, 56, 59). Recently, the Bcl-2 rs956572 genotype AA was found to be associated with an abnormal Bcl-2 expression and to contribute to a dysfunctional Ca\(^{2+}\) homeostasis in BD, these effects were reversed by lithium (16, 26, 60). These effects seem to involve a direct regulation by inositol 1,4,5-triphosphate (IP\(_3\)) receptors (27–29, 60). Also, chronic lithium treatment increased Bcl-2 expression and protein levels in the frontal cortex, hippocampus and striatum (30, 31, 61, 62). Repeated electroconvulsive treatment (ECT) administration in primates increased precursor cell proliferation in the DG because of increased expression of Bcl-2 (32, 63). Bcl-2 knockout mice were found to have increased anxiety-like behaviours (64), supporting the role of this gene in mediating emotional-like behaviours.

The ER has also been shown to be critically involved in the regulation of intracellular calcium levels. Ca\(^{2+}\) is released from the ER mostly through IP\(_3\) receptors. XBP1, a pivotal gene in ER stress response, has been considered a genetic risk factor for BD and its variant XBP1C/G has been associated with higher stress responses in lymphoblastoid cells lines (65). So et al. (66) observed impaired ER stress responses in BD subjects. Moreover, Hayashi et al. (67) reported that the induction of the spliced form of XBP1 and total XBP1 was significantly attenuated in patients with BD. Interestingly, chronic valproate and lithium regulate expression of ER stress proteins (68, 69). More recently, it was suggested that XBP1 116C/G would predict response to treatment with valproate (70).

In addition, patients presenting Darier’s disease, a disease that involves a mutation in the ER Ca\(^{2+}\) pump (SERCA) also have high rates of comorbid BD and/or the presence of manic-like symptoms.

Overall, changes in the expression of diverse mitochondrial/ER and plasticity genes regulated by calcium and Bcl-2 have been shown to significantly affect cellular viability and lithium seems to rescue cells from these deleterious effects.

Neurotrophic signaling cascades: BDNF and extracellular signal-regulated kinase–mitogen-activated protein kinase (ERK/MAPK) pathway

Members of the neurotrophin family include nerve growth factor, brain-derived neurotrophic factor (BDNF), neurotrophins 3, 4, 5, and 6 and others. They bind to and activate a specific receptor tyrosine kinase (Trk) family. BDNF binds to the TrkB receptor with high affinity, thus activating diverse intracellular cascades involved in cellular survival and growth, such as the PI3K/Akt, MEK/ERK and phospholipase C (PLC)/PIP\(_2\) signaling systems (71). BDNF exerts its biological effects through at least three key signaling pathways: phosphoinoside-3-kinase (PI3K)/Akt, PLC, or ERK–mitogen-activated kinase pathways. BDNF and the ERK pathways are considered key signaling cascades mediating neurotrophic actions and synaptic plasticity (7).

Altered BDNF levels and expression have been described in different animal models of depression and mania (72). Preclinical studies have also described that stress, which is involved in mood disorders, decreases the expression of BDNF (73). Interestingly, the interaction between BDNF and corticosteroids has been suggested to mediate the vulnerability to mood disorders (2). Chronic antidepressant treatment increases BDNF expression in rat prefrontal cortex and hippocampus (74).

Peripheral levels of BDNF showed a significant decrease during manic and depressive episodes in mood disorders, which in some cases were shown to be significantly associated with the severity of symptoms and therapeutic response to antidepressants (53, 75). Furthermore, we recently reported that lithium monotherapy increases BDNF in acutely manic patients (76). Based on these findings of altered BDNF levels during mood episodes in peripheral cells and plasma/serum, it has been proposed that this neurotrophin may be a useful surrogate outcome measure of clinical improvement in mood disorder patients undergoing treatment (72).

The ERK/MAPK pathway has also been implicated in mediating some behavioural and pathophysiological facets of BD, presumably by mediating long-term cellular plasticity events (77). The ERK/MAPK pathway is a major intracellular
signaling cascade mediating the biological effects of neurotransmitter factors. Activated ERK phosphorylates diverse proteins involved in cellular plasticity (78). The regulatory effects of mood stabilizers on cell survival and resilience have been shown to be mediated by activation of the MAPK cascade. One target of the ERK/MAPK cascade is ribosomal S6 kinase (RSK), which activates CREB. RSK phosphorylates CREB, thus increasing the expression of the neuroprotective proteins involved in BD pathophysiology (64, 79) (see Fig. 1). Recently, it was demonstrated that ERK1 KO mice exhibit a behavioural excitation profile in several models of depression and mania (78).

Regarding therapeutics, the potential involvement of ERK cascade in the effects of mood stabilizers has been shown. Chronic lithium and valproate activate a major neurotrophic signaling pathway—the ERK/MAPK cascade, and its downstream effectors RSK and CREB. Studies have shown that therapeutic dose of lithium and valproate upregulate the ERK/MAPK cascade in human neuroblastoma cells (77, 80). Also, chronic lithium and valproate at therapeutically relevant concentrations robustly increase the levels of activated ERK and RSK (measured by the phosphorylation of ERK and RSK) in the anterior cingulate cortex, hippocampus, rodent cerebellum, and cortex (61, 80–82). Taken together, these data support an integrated role for the BDNF and ERK pathways in the pathophysiology and therapeutic action of mood stabilizers.

Phosphoinositol signaling pathway (IP3/Inositol cascade)

The phosphoinositol signaling pathway (IP3/Inositol cascade) has been linked to many cellular processes and pathological conditions (83). PLC produces diacylglycerol and IP3, the latter of which binds IP3 receptors on the ER to generate calcium mobilization from internal stores (84, 85). Binding IP3 to its receptor induces release of ER calcium content. IP3 binding sets forth downstream and is recycled back to PIP-2 by the enzymes IMPase and IPPase. It is important to mention that IMPA2 encoding IMPase is a candidate susceptibility gene for BD. One of the two human IMPase genes, IMPA2 (86–89), was reported to be genetically associated with BD (87, 90). The ‘inositol-depletion hypothesis’ postulated that lithium, characterized as an uncompetitive inhibitor of inositol-1-phosphatase, generated its therapeutic effects by decreasing myoinositol levels. Lithium depletes IP3 levels mediated by inhibiting of inositol monophosphatase and consequently decreases free inositol levels (87, 90).

Lithium has been shown to reduce inositol levels (1–4) by inhibiting IMPase in vivo (91), although the magnitude of inhibition is generally modest. However, it is not fully elucidated whether reduction in inositol is sufficient to limit PI or PIP2 synthesis. Williams et al. (2002), using a tissue-culture assay that measures sensory neuron growth-cone stability, have demonstrated that mood stabilizers (lithium, carbamazepine and valproate) share a similar mechanism of action. These findings reinforce the neural development hypothesis for lithium effects (92). Overall, the concept that lithium inhibits the dephosphorylation of IP3 at therapeutic concentrations, depleting cells of free inositol and bringing about its therapeutic effects has been questioned, but still remains an important reference in this area.

Glycogen synthase kinase (GSK-3)

GSK-3 is a kinase that acts as an intermediary in numerous intracellular signaling pathways and is regulated by serotonin, dopamine, psychostimulants, and antidepressants (3). GSK-3 is a key regulator of apoptosis and cellular plasticity/resilience, and this role has been postulated to be a key molecular target for lithium and valproate effects (5, 93). Lithium is considered a direct inhibitor of GSK-3, via competition with magnesium for a binding site (94, 95). In mice, GSK-3 has also been shown to be inhibited by the structurally dissimilar valproate (96), and ECT, a non-pharmacologic therapy for mood disorders (97).

Animal behavioural data, from pharmacologic and genetic models, has shown that manipulation of GSK-3 produces both antidepressant and antimanic effects (3, 98). Similarly, lithium has been demonstrated to exert both such effects. Also, it was found that lithium-induced behaviours in wild-type mice are phenocopied by overexpression of the GSK-3 target, β-catenin. GSK-3 inhibition results in a decrease in phosphorylation and degradation of its target β-catenin, and at therapeutically relevant concentrations, lithium increases β-catenin and Wnt-mediated gene expression in rodent brain. Notably, both lithium and β-catenin overexpression display mood stabilizing-like actions in prototypical animal models of mania (D-amphetamine hyperlocomotion) and depression (forced swim test) (99). It was therefore hypothesized that transgenic mice that overexpress a constitutively active form of β-catenin would phenocopy lithium’s behavioural effects. Further studies have been carried out to identify the GSK-3 target most relevant to lithium’s behavioural effects.
Interestingly, GSK-3 has been found to play a critical role in regulating circadian rhythm, in preclinical models (100, 101). Patients with BD often demonstrate circadian disturbances, and lithium has been shown to increase circadian period in humans and animals (92, 102, 103), consistent with a consistent decrease in GSK-3 activity. Studies showing that psychomimetic drugs (amphetamine, LSD, and PCP) increase GSK-3 phosphorylation in frontal cortex and striatum (104) provide circumstantial support for the possibility of an underlying GSK-3 abnormality in BD. However, direct evidence for the role of GSK-3 in the etiology of BD has not been reported yet, and genetic studies have not reproducibly found GSK-3 polymorphisms to be associated with the disease. Therefore, it remains to be determined whether the pathophysiology of BD involves dysfunction of GSK-3 itself, or of other signaling molecules regulated by GSK-3. Nevertheless, in view of the role of GSK-3 in neural plasticity, survival, and circadian rhythms, and its involvement in the action of mood stabilizers, development of new selective GSK-3 inhibitors is actively underway by numerous pharmaceutical companies.

Discussion

The search for strategies aiming to improve neuroprotection and neurotrophic effects may represent a promising field for the development of improved treatments for BD. Regional reductions in brain volume are most likely a consequence of impairments of structure plasticity and resilience. While there is preclinical data describing neurotrophic and neuroprotective alterations in BD and reversal of these deficits with mood stabilizers, data linking these alterations to patients is lacking. Overall, the most consistent and replicated findings in the pathophysiology of BD may be classified as follows: i) calcium dysregulation, ii) mitochondrial/endoplasmic reticulum dysfunction leading to, iii) glial and neuronal death/atrophy and iv) loss of neurotrophic/plasticity effects in brain areas critically involved in mood regulation. These changes may be interconnected and studies examining these potential associations are needed. Studies that attempt to prevent (intervene before the onset of the molecular and cellular changes), treat (minimize severity of these deficits over time), and rectify (reverse molecular and cellular deficits) are promising therapeutic avenues for developing improved treatments for BD. Investigations are ongoing in these areas and may provide further insights into the complex pathophysiological basis of this illness with the goal of improved therapeutics.

Acknowledgements

We thank Fapesp (2009/14891-9) and Associação Beneficente Alzira Denise Hertzog da Silva (ABADHS).

References

22. DREVECTS WC. Functional anatomical abnormalities in limbic and prefrontal cortical structures in major depression. Prog Brain Res 2000;126:413–431.

42. ANDREOPoulos S, WASSERMAN M, WOO K, LI PP, WARSH JI. Chronic lithium treatment of B lymphoblasts from bipolar disorder patients reduces transient receptor potential channel 3 levels. Pharmacogenomics 2004;5:365–373.

50. ANDREAZZA AC, SHAO L, WANG JF, YOUNG LT. Mitochondrial complex I activity and oxidative damage to mitochondrial proteins in the prefrontal cortex of patients with bipolar disorder. Arch Gen Psychiatry 2010;67:360–368.

52. BENSES FM, MATZLEVICH D, BURKE RE, WALSH J. The expression of proapoptosis genes is increased in bipolar disorder, but not in schizophrenia. Mol Psychiatry 2006;11:241–251.

Translating neurotrophic and cellular plasticity

61. MANI HK, MOORE GI, CHEN G. Lithium at 50: have the neuroprotective effects of this unique cation been overlooked? Biol Psychiatry 1999;46:929–940.

Soeiro-de-Souza et al.

Dear Author,

During the copy-editing of your paper, the following queries arose. Please respond to these by marking up your proofs with the necessary changes/additions. Please write your answers on the query sheet if there is insufficient space on the page proofs. Please write clearly and follow the conventions shown on the attached corrections sheet. If returning the proof by fax do not write too close to the paper’s edge. Please remember that illegible mark-ups may delay publication.

Many thanks for your assistance.

<table>
<thead>
<tr>
<th>Query reference</th>
<th>Query</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>AUTHOR: A running head short title was not supplied; please check if this one is suitable and, if not, please supply a short title of up to 40 characters that can be used instead.</td>
<td></td>
</tr>
<tr>
<td>Q2</td>
<td>AUTHOR: Please provide city name for affiliation 2.</td>
<td></td>
</tr>
<tr>
<td>Q3</td>
<td>AUTHOR: Please check that authors and their affiliations are correct.</td>
<td></td>
</tr>
<tr>
<td>Q4</td>
<td>AUTHOR: Please check corresponding author details.</td>
<td></td>
</tr>
<tr>
<td>Q5</td>
<td>AUTHOR: Please check keywords.</td>
<td></td>
</tr>
<tr>
<td>Q6</td>
<td>AUTHOR: Please check heading levels.</td>
<td></td>
</tr>
<tr>
<td>Q7</td>
<td>AUTHOR: Author names found to be mismatch with this reference citation, please check.</td>
<td></td>
</tr>
<tr>
<td>Q8</td>
<td>AUTHOR: Please defined DG (if applicable).</td>
<td></td>
</tr>
<tr>
<td>Q9</td>
<td>AUTHOR: Please defined CREB (if applicable).</td>
<td></td>
</tr>
<tr>
<td>Q10</td>
<td>AUTHOR: To facilitate sequential numbering, reference numbers have been reordered. Please check.</td>
<td></td>
</tr>
<tr>
<td>Q11</td>
<td>AUTHOR: Please defined LSD, and PCP (if applicable).</td>
<td></td>
</tr>
<tr>
<td>Q12</td>
<td>AUTHOR: Figure 1 has been saved at a low resolution of 164 dpi. Please resupply at 600 dpi. Check required artwork specifications at http://authorservices.wiley.com/submit_illust.asp?site=1</td>
<td></td>
</tr>
</tbody>
</table>
USING e-ANNOTATION TOOLS FOR ELECTRONIC PROOF CORRECTION

Required software to e-annotate PDFs: Adobe Acrobat Professional or Adobe Reader (version 8.0 or above). (Note that this document uses screenshots from Adobe Reader X)
The latest version of Acrobat Reader can be downloaded for free at: [http://get.adobe.com/reader/]

Once you have Acrobat Reader open on your computer, click on the Comment tab at the right of the toolbar:

This will open up a panel down the right side of the document. The majority of tools you will use for annotating your proof will be in the Annotations section, pictured opposite. We've picked out some of these tools below:

1. Replace (Ins) Tool – for replacing text.
 - Strikethrough tool
 - Strikethrough (Del) tool – for deleting text.
 - How to use it
 - Highlight a word or sentence.
 - Click on the Replace (Ins) icon in the Annotations section.
 - Type the replacement text into the blue box that appears.

2. Strikethrough (Del) Tool – for deleting text.
 - Strikethrough tool
 - Strikethrough (Del) tool
 - How to use it
 - Highlight a word or sentence.
 - Click on the Strikethrough (Del) icon in the Annotations section.

3. Add note to text Tool – for highlighting a section to be changed to bold or italic.
 - Add note tool
 - Add note to text icon
 - How to use it
 - Highlight the relevant section of text.
 - Click on the Add note to text icon in the Annotations section.
 - Type instruction on what should be changed regarding the text into the yellow box that appears.

4. Add sticky note Tool – for making notes at specific points in the text.
 - Add sticky note tool
 - Add sticky note icon
 - How to use it
 - Click on the Add sticky note icon in the Annotations section.
 - Click at the point in the proof where the comment should be inserted.
 - Type the comment into the yellow box that appears.
5. **Attach File Tool** – for inserting large amounts of text or replacement figures.

Inserts an icon linking to the attached file in the appropriate pace in the text.

How to use it
- Click on the Attach File icon in the Annotations section.
- Click on the proof to where you’d like the attached file to be linked.
- Select the file to be attached from your computer or network.
- Select the colour and type of icon that will appear in the proof. Click OK.

6. **Add stamp Tool** – for approving a proof if no corrections are required.

Inserts a selected stamp onto an appropriate place in the proof.

How to use it
- Click on the Add stamp icon in the Annotations section.
- Select the stamp you want to use. (The Approved stamp is usually available directly in the menu that appears).
- Click on the proof where you’d like the stamp to appear. (Where a proof is to be approved as it is, this would normally be on the first page).

7. **Drawing Markups Tools** – for drawing shapes, lines and freeform annotations on proofs and commenting on these marks.

Allows shapes, lines and freeform annotations to be drawn on proofs and for comment to be made on these marks.

How to use it
- Click on one of the shapes in the Drawing Markups section.
- Click on the proof at the relevant point and draw the selected shape with the cursor.
- To add a comment to the drawn shape, move the cursor over the shape until an arrowhead appears.
- Double click on the shape and type any text in the red box that appears.

For further information on how to annotate proofs, click on the Help menu to reveal a list of further options: